
Articles of THAT Home Automation Topology

Door Widget Seven-Segment Scrambling
2010-05-09 14:05:15 by Chris

One feature of the Door Widget is its rotating passcode entry system. This feature requires the display
digits to scramble randomly each time a passcode will be entered.

The 10 digits are stored in an array and these values are spit out to the displays, one at a time, every
timer interrupt. The logical way to rotate the digits was to randomly pick two displays, swap their digits,
and repeat this process enough times to sufficiently jumble the digits.

I needed to generate random numbers to represent indices in the array of digits. There are several ways
to generate random integers in C on the AVR. The easiest method that generates a char from 0 to N-1 is
shown below. Note: The code examples below generate characters but could just as easily generate
integers.

// Generating random characters between 0 and N-1
unsigned char r1 = rand()%N; // Not so random

Below is a better method. Again it generates a random character from 0 to N-1. The first example uses
floating point math (slow) and the next does not. RAND_MAX is an ANSI constant defined in stdlib.h and is
equal to 0×7FFF. N must be much less than RAND_MAX (10 << 0x7FFF).

// Generating random characters between 0 and N-1

// Better method (floating point)
unsigned char r2 = (char)((double)rand()/((double)RAND_MAX+1)*N);

// Same method without floating point
unsigned char r3 = rand()/(RAND_MAX / N + 1);

I tested the r2 example (floating point method) on the Door Widget hardware and the time necessary to
perform even 10 swaps created a noticeable lag in execution. I ended up going with the non-floating
point, r3 example at the bottom. Fifty swaps are able to execute relatively quickly. The relevant C code is
shown below.

unsigned char get_random(void)
{
 unsigned char N = 10;
 //return (char)((double)rand() / ((double)RAND_MAX + 1) * N);
 return rand() / (RAND_MAX / N + 1);
}

void scramble(void)
{
 unsigned char i,r1,r2,c1,c2;

 for (i=0; i<=50; i++)
 {
 r1 = get_random();
 r2 = get_random();

 c1 = current_char[r1];
 c2 = current_char[r2];

 current_char[r1] = c2;
 current_char[r2] = c1;
 }
 return;
}

I was surprised to find that this method had an interesting effect on the displays. The seven segment

http://busybot.org/that
http://busybot.org/that/2010/05/09/seven-segment-scrambling/

displays all visibly shuffle every time scramble() is called. My original plan was to scramble a temporary
copy of the digits and then copy back to current_char[]. I only stored the new values to current_char[]
directly for debugging purposes. I like the effect, however, and will probably keep it like this.

Source:
C FAQ: Question 13.16 - http://c-faq.com/lib/randrange.html

http://c-faq.com/lib/randrange.html

